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Many gene–disease associations proposed to date have not been
consistently replicated across different populations. Nonreplica-
tion often reflects false positives in the original claims. However,
occasionally, nonreplication may be due to heterogeneity due to
biases or even genuine diversity of the genetic effects in different
populations. Here, we propose methods for estimating the re-
quired sample size to replicate an association across many studies
with different amounts of between-study heterogeneity, when
data are summarized through metaanalysis. We demonstrate
thresholds of between-study heterogeneity (�0

2) above which one
cannot reach adequate power to replicate a proposed association
at a specified level of statistical significance when k studies are
performed (regardless of how large these studies are). Based on
empirical evidence from 91 proposed gene–disease associations
(50 on candidate genes and 41 from genome-wide association
efforts), the observed between-study heterogeneity is often close
to or even surpasses nonreplicability thresholds. With more mod-
est between-study heterogeneity, the required sample size in-
creases considerably compared with when no between-study het-
erogeneity exists. Increases are steep as �0

2 is approached.
Therefore, some true associations may not be practically possible
to replicate with consistency, no matter how large studies are
conducted. Efforts should be made to minimize between-study
heterogeneity in targeted genetic effects.

genome � heterogeneity � metaanalysis � polymorphism

Lack of replication of proposed gene–disease association has
been seen repeatedly in the literature (1–5). Nonreplication

often means that the original research findings reflected false
positives. Replication is now considered a sine qua non for the
rigorous documentation of proposed associations, and this is
becoming even more prominent in the era of genome-wide
association studies (6, 7). Nonreplication of a proposed associ-
ation may be the desirable outcome in some situations, whereas
it may be an error in others. For example, failure to replicate an
association that arose because of genotyping error in the original
study is desirable, whereas failure to replicate because of geno-
typing error in the replication study is wrong. Occasionally,
nonreplication may occur even when a genuine association does
exist and even if random measurement error is not large. The
results of replicating studies may vary among themselves if biases
(any systematic source of error, excluding random measurement
error due to chance alone) affect differently the observed effects
across various studies. Nonreplication may also arise if there is
genuine diversity of the genetic effects in different populations
and settings.

These situations may not be uncommon. Common biases
include population stratification, misclassification of phenotype,
genotyping error, and selection biases affecting the whole field
of research, e.g., publication and selective reporting biases
(8–11). Genuine differences in the genetic effects include dif-
ferential linkage disequilibrium of the identified genetic marker
with the true functional culprit gene variant in different popu-

lations (12); and association with a different, correlated pheno-
type. Differential linkage disequilibrium may be common in
genome-wide association studies, because the tag polymor-
phisms are not selected based on functional evidence. We also
are starting to see examples of associations for correlated
phenotypes. For correlated phenotypes, failure of replication is
desirable, because it points out that we need to search for an
association with a different phenotype rather the one that was
originally proposed. For example, an FTO variant showed het-
erogeneous associations in genome-wide association studies of
diabetes (13), but it had a consistent association with body mass
index and obesity across many studies (14). Some of the diabetes
studies had matched cases and controls for body mass index, so
no association was observed with diabetes, whereas in other
studies the diabetic cases tended to be more obese than the
controls. Finally, latent population-specific gene–gene or gene–
environment interactions may result in different average genetic
effects in different settings (15).

Here, we propose methods for estimating the required sample
size to replicate an association across many studies with different
amounts of between-study heterogeneity when data are summa-
rized through metaanalysis (16–19). We performed simulations
for which we assumed that a certain proposed gene–disease
association would be tested in many different studies, and the
data would then be synthesized by metaanalysis. Metaanalysis is
the final step in asserting the credibility of effects (17–21).
Metaanalysis across diverse populations also has become the
standard for confirming proposed associations after massive
genome-wide association testing (6, 7). We aimed to estimate
what the total required sample size would be, depending on the
frequency of the minor genetic variant of interest, the magnitude
of the average genetic effect [odds ratio in multiplicative (log-
additive) model], and the extent of heterogeneity (diversity) in
the genetic effects across the different studies.

There are several different metrics for expressing between-
study heterogeneity (22–25). Our simulations assumed different
values of heterogeneity expressed by the between-study variance
�2. Calculations used random-effects models and the DerSimo-
nian and Laird estimator of between-study variance (26). These
models assume that the genetic effects are different across the
different study populations, and they try to estimate the average
population effect and the dispersion thereof (heterogeneity).
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Results
Nonreplicability Thresholds. As demonstrated in detail in Methods
(see also ref. 27), the required sample size n to detect an overall
association with power (1 � �) at a significance level of � when
there are k studies and each one of them has a portion �i � ni/n
of the total sample can be estimated through

�*1,�,�1��� � �*2 �
i�1

k 1
Ai

n�i
� �2

, [1]

where �*1,�,(1��) is the noncentrality parameter corresponding to
a noncentral 	2 variable that exceeds the upper � percentile of
the 	2 distribution (1 � �)% of the time; Ai/n�i is the variance
of the log odds ratio, where Ai is given by 1/[f1i(1 � f1i)] �
1/[f2i(1 � f2i)], with f1i and f2i being the frequencies of the genetic
variant in controls and cases, respectively, of study i (i � 1, 2 ,
. . . , k); and �* is the mean normalized genetic effect (log odds
ratio). Under different assumptions for �*, �2, Ai, and �i, one can
iteratively find the sample size, n, that satisfies Eq. 1.

For simplification, we consider that all k replication studies
have the same sample size; i.e., �i is the same for all studies. For
a metaanalysis of k studies with increasing sample sizes and for
common variants, Ai/n�i in Eq. 1 approaches zero, and thus we
are left with

�*1,�,�1��� � �*2�
i�1

k 1
�2 � k�*2��2. [2]

This result shows that �2 cannot exceed k�*2/�*1,�,(1��) and that
the equality holds when the total sample size approaches infinity.
In other words, no sample size, no matter how large, would be
sufficient to achieve the required power (1 � �) for the test for
overall association if the between-study heterogeneity exceeds
the threshold �0

2 � k�*2/�*1,�,(1��) .
For example, when � � 0.05 and (1 � �) � 0.80, we can use

the CNONCT function in SAS to calculate the value of �*1,�,(1��),
which is equal to 7.849. To detect a log odds ratio �* � 0.336
(corresponding to an odds ratio of 1.4) for k � 10 studies, �2 has
to be �0.14. With higher levels of between-study heterogeneity,
power to overall replicate the association in the final metaanaly-
sis of all data remains �80%, even at the very liberal � � 0.05,
no matter how large these 10 studies are. The �0

2 decreases further
when we ask for more stringent levels of statistical significance,
and it reaches a value of 0.030 when we require genome-wide
levels of significance (� � 0.0000001) to accept an association
under otherwise similar �*, �, and k.

Another useful metric is h0, which is defined as the ratio of
�0/ �* ; i.e., it states the largest allowed proportion of the effect
size that the between-study deviation may represent, so that an
association would still be detectable when the k replicating
studies are combined. The h0 threshold is independent of the
effect size. Table 1 shows the values of this threshold for different
levels of � (0.05, 0.01, 0.0001, and genome-wide 0.0000001) and
for different levels of requested power. As shown, once we
request genome-wide significance, the threshold changes rela-
tively little for power between 50% and 95%. The h0 is linearly
proportional to the square root of the number of studies k. For
10 studies, the h0 varies between 0.454 and 0.594, suggesting that
nonreplicability ensues when the between-study standard devi-
ation is about half of the effect. Conversely, with as many as 50
studies, the h0 varies between 1.011 and 1.329, suggesting that the
nonreplicability threshold becomes more remote and will not
ensue unless the between-study standard deviation is at least as
large or larger than the full size of the effect.

Heterogeneity in Proposed Associations. The estimated �0 and h0
thresholds are not very high. Across 50 genetic associations
proposed in the candidate gene era that reached nominal
statistical significance (P � 0.05) in metaanalyses of all of the
available data (28), 38 had � different from zero. Fig. 1a shows
the distribution of � and the distribution of h � �/ � (the ratio
of the between-study study variation over the absolute effect
size) in these 38 metaanalyses. The median values are 0.26 and
0.84. These values are on the high side of the range of thresholds
of nonreplicability that we have estimated in Table 1, even for
relatively lenient levels of statistical significance. Therefore, for
several gene–disease associations, the high power to replicate
them may not be reached, no matter how large the studies that
we conduct are. Paradoxically, these associations would be true,
but nonreplicable, if between-study heterogeneity remains in the
range observed for postulated associations in the past.

We also estimated the values of � and h for the 10 loci that have
been considered to be ‘‘confirmed’’ susceptibility loci in a recent
prospective metaanalysis of three genome-wide association stud-
ies of type 2 diabetes (29). For six of these studies, there was some
between-study heterogeneity, with � ranging between 0.017 and
0.138 and h ranging between 0.12 and 0.62 (Fig. 1a). Although
these values are smaller than those observed in the metaanalyses
of published data from the candidate gene era, they still remain
considerable and may interfere with the replicability of specific
associations. Another recent genome-wide association study of
breast cancer provided summary odds ratios for 31 polymor-
phisms that had been selected for further replication in 23
case-control studies (30). Eleven of these 31 polymorphisms have
nominal P values of �0.05 by random-effects calculations. Of the
11 studies, five had � � 0, whereas in the other six polymorphisms
� ranged from 0.028 to 0.075 and h ranged from 0.14 to 1.70 (Fig.
1a). For the 20 ‘‘nonreplicated’’ breast cancer polymorphisms
(P � 0.05 for the summary effect), only two had estimated � �
0; for 12 polymorphisms, � ranged from 0.013 to 0.1 and h ranged
from 1.04 to 5.37; and in the other six, � ranged from 0.027 to 0.14
and h ranged from 6.95 to 42.38 (Fig. 1b). The summary effect
sizes for these 20 nonreplicated polymorphisms were generally
very small (corresponding to odds ratios of 0.95–1.04), but one
cannot rule out completely the possibility that some of them may
still mirror true associations but were not replicated because the
heterogeneity was too much given the genetic effect sizes
[supporting information (SI) Table 2].

Estimates of Required Sample Size in the Presence of Heterogeneity.
One may also estimate the required sample sizes to detect an
association in the presence of more modest between-study
heterogeneity (below the nonreplicability thresholds). These

Table 1. Nonreplicability thresholds for different values of type I
and II errors and for different number of studies

Type I error, �

Power,
(1 � �)%

h0 with
k � 10

h0 with
k � 4

h0 with
k � 50 h0/�k

0.05 50 1.614 1.020 3.606 0.510
0.01 50 1.228 0.776 2.744 0.388
0.0001 50 0.813 0.514 1.817 0.257
0.0000001 50 0.594 0.376 1.329 0.188
0.05 80 1.129 0.714 2.524 0.357
0.01 80 0.925 0.586 2.072 0.293
0.0001 80 0.668 0.422 1.492 0.211
0.0000001 80 0.513 0.324 1.146 0.162
0.05 95 0.877 0.554 1.959 0.277
0.01 95 0.749 0.474 1.676 0.237
0.0001 95 0.571 0.362 1.280 0.181
0.0000001 95 0.454 0.286 1.011 0.143
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sample sizes can be compared against the respective sample
sizes in the absence of any between-study heterogeneity. We
considered a range of plausible values for the overall average
genetic effect, corresponding to odds ratios of 1.05, 1.1, 1.2,
1.3, 1.4, and 2.0. We also considered a range of plausible values
for �2 that would be below the respective nonreplicability
threshold given the specified odds ratio, � � 0.0000001 and
power of 80%. These thresholds are 0.0006, 0.0024, 0.0087,
0.0181, 0.0298, and 0.1263 for odds ratios of 1.05, 1.1, 1.2, 1.3,
1.4, and 2.0, respectively. We show results for 10 replicating
studies of equal sample size that we conducted under the
assumption that different numbers of studies would not change
the results considerably. The simulations involved generating
10 values of �i from a normal distribution N(�*, �2) for a
hypothetical metaanalysis of 10 studies (�i � 0.1). We con-
sidered a range of minor genetic variant frequencies in the
controls, f1(0.05, 0.1, 0.2, 0.3, and 0.4). For each of the
scenarios based on different minor genetic variant frequency,
odds ratio, and �2, 10,000 simulations were carried out.

For an illustration of our simulation, SI Fig. 3 gives the
distributions of sample size obtained for �2 � 0.002 and 0.007,
respectively, when the odds ratio is 1.2 and the genotype
frequency is 0.2. The mean estimated sample size for �2 � 0.002

is 19,688 and the 95% confidence interval is given by 19,688 	
190 whereas the mean sample size for �2 � 0.007 is 76,449 and
the 95% confidence interval is given by 76,449 	 1,376. Mean
estimated sample sizes are described from now on.

As shown in Fig. 2, as expected, the required sample size
requirement increased steeply with decreasing odds ratios and
decreasing frequencies of the genetic variant. For example, when
the odds ratio is 1.4, genetic variant frequency is 0.1, and there
is no between-study heterogeneity (�2 � 0, essentially a fixed-
effect model), the required sample size is 8,668. For the same
genetic variant frequency and �2 � 0 the required sample size
increases to 362,298 when the odds ratio is 1.05. When the odds
ratio is 1.2 and when �2 � 0, the required sample size increased
by 439% for a genetic variant frequency of 0.05 compared with
a genetic variant frequency of 0.4. Similar trends can be seen for
different values of �2.

For the same combination of genetic variant frequency and
odds ratio, the required sample size also increases steeply with
increasing values of �2, especially as �2 approaches the threshold
�0

2 (Fig. 2). For example, when the odds ratio is 1.2, for �2 � 0,
the required sample size ranged from 9,755 to 52,534 for the
genotype frequencies considered; for �2 � 0.002, the required
sample size still ranged from 12,656 to 68,148. When �2 � 0.007,
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Fig. 1. Histograms for � and h values observed in 50 metaanalyses of genetic associations from the candidate gene era (white boxes) (28), 10 prospective
metaanalyses of genome-wide associations on type 2 diabetes and their replication efforts (black boxes) (29), and 31 metaanalyses of polymorphisms proposed
to be associated with breast cancer through a two-stage genome-wide association study (gray boxes) (30). Data are shown separately for associations for which
the summary effects have P � 0.05 (all candidate gene variants, all type 2 diabetes gene variants, and 11 of the breast cancer variants) (a) and for 20 proposed
breast cancer gene variants for which the summary effects have P � 0.05 (i.e., not replicated even with conservative criteria) (b).
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the required sample size increased steeply (range from 49,126 to
264,630). As �2 approached the �0

2 � 0.0087 threshold, the
required sample size tended to infinity. The same steep increase
is documented for otherwise similar settings, but with � � 0.05,
in SI Fig. 4.

Discussion
Our simulations show that some true associations may be
nonreplicable; i.e., when many studies are conducted, the power
to replicate the associations may remain below a given level,
regardless of how large study populations we can amass in the
replication efforts. This should not be seen as an argument that
large-scale replication of proposed associations should not be
pursued and intensely so. The field of human genome epidemi-
ology has seen a gradual transformation from a domain of small,
poorly replicated studies of single candidate genes (31) to
massive testing with genome-wide platforms and extensive rep-
lication even upon the first publication of a postulated associa-
tion (13, 29, 32–34). Replication sample sizes have gradually
increased to exceed 40,000 subjects in some studies (14, 30). Our
calculations suggest that such sample sizes or even larger are
absolutely essential in generating sufficient power that a pro-
posed association of small or modest effect size can be properly
replicated, at least when between-study heterogeneity is not
large. The very large sample sizes required also offer support to
efforts to generate large-scale consortia (35) as well as biobanks
(36) and new large-scale population cohorts (37), especially for
research where case-control sampling is not feasible or
appropriate.

We should caution that inferences for the presence or absence
of an association are typically made based on some threshold,
and, here, we have assumed frequentist thresholds (P values).
Obviously, one should also examine the uncertainty in the
summary estimate as conveyed by the confidence intervals.
When the confidence intervals do not exclude large effects, more
evidence from additional samples is likely to be sought trying to

obtain a more conclusive answer. However, as we show, above
the nonreplicability threshold, even with more data, the thresh-
old of significance may still not be passed.

One might argue that we can raise the �0
2 and h0 nonreplica-

bility thresholds by performing more large studies (increasing k).
However, this is only an artificial relief that does not hold in
practice. The number of studies that can be performed is usually
limited by the number of investigative teams working on a
specific topic, and it is very uncommon that more than a dozen
teams or so can put forth very large data sets in any field,
including genetic associations. Splitting the data from a single
team to many (sub)studies also is misleading: Point estimates in
small substudies would have very large uncertainty; thus, seem-
ing homogeneity would reflect simply lack of power to detect
heterogeneity.

We should acknowledge that our sample size calculations
assume for each time the same frequency for the genetic variant
of interest across the different studies. Therefore, we consider
populations with similar genetic background regarding the spe-
cific variant. When the genetic variant frequency varies across
populations, those populations are likely to be even more
heterogeneous; e.g., they may have different ethnic or racial
descent. Preliminary evidence suggests that differences in ge-
netic frequencies across populations of different racial descent
usually are not accompanied by differences in the population-
specific genetic effects (odds ratios) (38). Nevertheless, all other
aspects being equal, considering populations with heterogeneous
frequencies is likely to introduce more between-study hetero-
geneity, if anything, potentially leaving room for even less
heterogeneity from other sources to reach the �0

2 thresholds.
Our findings imply that the success of the replication process

is contingent on efficiently reducing the between-study hetero-
geneity in the genetic effect in the replication studies. Reducing
between-study heterogeneity may sometimes be feasible if the
heterogeneity is due to errors and biases that can be amended
with proper attention to study design and methodological issues.
Such errors and biases include phenotype and genotype misclas-
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f1 for a metaanalysis of 10 equally large studies.
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sification (39), population stratification (40), and selective re-
porting biases (41). Modest decreases in these sources of heter-
ogeneity may allow the data to be brought to sufficient
consistency, avoiding proximity to the nonreplicability threshold.
Prospective metaanalysis of genome-wide association studies
benefit from greater attention to genotyping and population
stratification control (principal component analysis) and a lack
of selective reporting problems.

Genuine heterogeneity also may be reduced by identifying the
culprit genetic variant through fine mapping, sequencing, and
functional studies for variants in the region of the markers that
emerge from genome-wide testing (42). When heterogeneity is
due to differential linkage disequilibrium of the unknown culprit
marker in different populations, failure to replicate is desirable,
because we realize that the identified marker has no generaliz-
ability for use as a prognostic test across different populations.
The information is still useful from a biological perspective, e.g.,
pointing to a genetic area that needs more study. Tackling
population-specific gene–gene and gene–environment interac-
tions may be difficult at the current stage (43). Finally, if racial
descent or some other population characteristic (e.g., gender) is
considered to underlie the between-study heterogeneity, then
the evaluation and synthesis of data on genetic effects should be
performed separately for different subgroups. However, such a
choice then needs to be supported with data that document the
genetic subgroup differences. To date, such documentation is the
exception (38, 44).

Eventually, even with the best efforts to minimize between-
study heterogeneity, a sizeable proportion of genuine associa-
tions may remain spuriously nonreplicated. Our simulations
provide evidence for an unavoidable uncertainty component in
rejecting postulated associations.

Methods
Sample Size and Power Calculations for Metaanalysis: Conceptual Issues.
Traditionally metaanalyses have been conducted retrospectively combining
data from past studies, which leaves considerable room for biases. In addition,
it may be argued that sample size and power calculations are not meaningful
for retrospective data (45): Sample size has already been accrued and effects
and their uncertainty have been observed. However, in the current setting of
searching for gene–disease associations, replication is increasingly envisioned
as a prospective effort. Typically, massive testing yields promising signals for
specific polymorphisms that then have to be replicated. Several replication
studies are often published in the same paper as the original discovery data
set. The conduct of replicating studies can be seen as a prospective metaanaly-
sis. In this setting, arguments against sample size calculations in metaanalysis
are not valid.

Hedges and Piggott (27) have described procedures to compute statistical
power of fixed- and random-effects tests of the mean effect size and tests for
heterogeneity of effect size parameters across studies. We expand these
methods here to calculate the required sample size for a prospective meta-
analysis of replicating studies in the absence or presence of between-study
heterogeneity.

Fixed- and Random-Effects Assumptions. Estimating an overall effect size �̂ for
a metaanalysis of k separate genetic association studies involve averaging the
estimated effect size, �̂i, of the of true effect size �i (i � 1, 2, . . ., k) over all of
the studies. For example, �̂i could be the observed log odds ratio, log relative
risk, risk difference, or mean difference (for continuous traits) in the ith
case-control study designed to detect an association between a genetic vari-
ant and a complex disease. In the fixed-effect approach, homogeneity of the
true effect sizes across studies, i.e., �1 � �2 � . . . � �k, is assumed. The overall
effect size is then estimated as a weighted average, �̂ � (
i�1

k wi�̂i)/(
i�1
k wi),

where wi is the weight given to the ith case-control study. We can assume that
�̂i is approximately normally distributed with mean �i and variance 
i (�̂i � N(�i,

i)). Under this assumption, �̂ � N(�, 
), where � � (
i�1

k wi�i)/(
i�1
k wi) and 1/
 �


i�1
k wi. Assuming equal sample size allocation for cases and controls, 
i � Ai/ni,

where ni is the sample size for cases (or controls), and Ai depends on the type
of effect size estimate. For example, if the effect size estimate is a log odds
ratio, Ai � 1/[f1i(1 � f1i)] � 1/( f2i(1 � f2i)], where f1i and f2i are the frequencies

of the genetic variant in controls and cases, respectively, of the ith case-control
study, i � 1, 2, . . ., k.

When heterogeneity is present, the random effects model incorporates
between-study variability into the overall estimate of the effect size. The
estimate of effect size, �̂i, from the ith case-control study is assumed to have
a N(�i, 
i) distribution as in a fixed-effect model, whereas the true effect sizes
from individual studies, �i, are assumed to have a N(�*, �2) distribution, where
�2 is the between-study variance. Similar to the fixed-effect model, an overall
estimate of random-effect sizes, �̂*, is obtained by a weighted average of the
effect sizes in individual case-control studies. The weight of the ith study in a
random-effects metaanalysis, w*i, is given by 1/(
i � �2). Thus, the weight given
to a study in random-effects metaanalysis depends not only on the variance of
the effect size for that study but also on the heterogeneity between studies.
As in the fixed-effect model, �̂* � N(�*, 
*), where �* � (
i�1

k w*i�i)/(
i�1
k w*i) and

1/
* � 
i�1
k w*i.

Here we have used random-effects calculations. Many genetic association
studies and their replication efforts use fixed-effects analyses. However, the
basic assumption of fixed effects is violated when there is any between-study
heterogeneity. Fixed effects may hint to important genetic variability at a
locus, but they generate inappropriately tight confidence intervals and low P
values in the presence of heterogeneity (46, 47).

Furthermore, in some circumstances effect sizes and heterogeneity may be
related to study sample size. For example, larger studies may include more
diverse populations and/or a wider spectrum of disease, and such studies may
be performed by more experienced investigators with lower error rates.
However, these possibilities need to be examined empirically on a case by case
basis.

Tests for Overall Association. Under the null hypothesis of no overall associa-
tion, �̂*2/
* has an approximately 	2 distribution with one degree of freedom.
Under the alternative hypothesis, �̂*2/
* has a noncentral 	2 distribution with
one degree of freedom and noncentrality parameter �*, given by �* �

�*2
i�1
k w*i � �*2
i�1

k 1/(
i � �2).

Sample Size Estimation. Let �i � ni/n, where n is the total sample size for the
k studies. Then 
i � Ai/n�i and the total sample size, n, required to detect an
overall association with power (1 � �) at a significance level of � is given by

�*1,�,�1��� � �*2 �
i�1

k 1
Ai

n�i
� �2

, [3]

where �*1,�,1�� is the noncentrality parameter corresponding to a noncentral
	2 variable that exceeds the upper � percentile of the 	2 distribution (1 � �)%
of the time. Assuming that �*, �2, Ai, and �i are known, one can iteratively find
the approximate sample size, n, that satisfies Eq. 1.

Thresholds for Heterogeneity. For a metaanalysis on a common variant includ-
ing k studies with increasing sample sizes and assuming that �i remains a
constant, Ai/n�i in Eq. 1 approaches zero, and we are left with

�*1,�,�1��� � �*2 �
i�1

k 1
�2 � k�*2��2. [4]

When the total sample size approaches infinity, the weights for a fixed-effect
model tends to infinity, but the weights for a random-effects model tends to
1/�2. This result shows that �2 has to be less than or equal to k�*2/�*1,�,1�� and
that the equality holds when the total sample size approaches infinity.

Empirical Data from 91 Postulated Gene–Disease Associations. Data from 50
metaanalyses of gene– disease associations that reached nominal statistical
significance (P � 0.05) with random-effects calculations have been pub-
lished previously (28), and details on the literature searches and selection
of genetic contrasts can be found elsewhere (1, 18, 28). Associations
pertained to candidate gene polymorphisms and diverse disease pheno-
types (no restriction set on disease phenotype). Data from prospective
metaanalyses of 10 genetic variants implicated in type 2 diabetes by
combining data from three genome-wide investigations along with their
replication efforts are derived from table 1 of Scott et al. (29). Each
genome-wide association data set and its replication are considered as one
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study (29). Data from prospective metaanalyses of 31 genetic variants that
were selected for further testing after successfully passing the first two
screening stages of a genome-wide association on breast cancer are de-
rived from the supplementary information of Easton et al. (30). The
third-stage replication data include information from 23 studies. For each
of these 91 postulated associations, we estimated the random-effects
summary odds ratio and the DerSimonian and Laird estimator of the

between-study variance to derive h. For the breast cancer postulated
polymorphisms, we present separately those with nominally significant
results (P � 0.05) versus those that did not reach nominal significance in the
random effects metaanalysis.

Simulations and Software. Simulations were programmed by using the IML
procedure in SAS Version 9 software.
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